Dijkstra's Algorithm
Shortest path in weighted graphs
Dijkstra's Algorithm
Dijkstra's algorithm finds the shortest path from a source to all other vertices in a weighted graph with non-negative edges. It uses a priority queue (min-heap) and runs in O((V + E) log V) time.
Dijkstra's Algorithm Flow
typescript
// Dijkstra's Implementation
function dijkstra(
graph: Map<number, [number, number][]>, // node -> [neighbor, weight][]
source: number,
n: number
): number[] {
const dist = new Array(n).fill(Infinity);
dist[source] = 0;
// Simple priority queue using sorted array (use heap for production)
const pq: [number, number][] = [[0, source]]; // [dist, node]
while (pq.length > 0) {
pq.sort((a, b) => a[0] - b[0]);
const [d, u] = pq.shift()!;
if (d > dist[u]) continue; // stale entry
for (const [v, w] of graph.get(u) || []) {
if (dist[u] + w < dist[v]) {
dist[v] = dist[u] + w;
pq.push([dist[v], v]);
}
}
}
return dist;
}